Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2309952, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389497

RESUMO

Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.

2.
Environ Pollut ; 266(Pt 3): 115152, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32702603

RESUMO

Nano-silica as an important part of soil is an ideal carrier of passivator material. In this paper, nano-silica was modified by silane coupling agent containing mercapto group and iron (II) salt to afford an organic-inorganic hybrid containing -S-Fe-S functional group (coded as RNS-SFe) on the surface of nano-silica. Results demonstrate that the RNS-SFe nanoparticle has network-like spheroidal shape and a primary particle size is about 18.0 nm. The RNS-SFe hybrid as a potential immobilization agent for heavy metal in soil shows excellent performance for the remediation of the contaminated soil. Specifically, with a dosage of 3.0% (mass ratio) in the soil, it can immobilize bioavailable Pb, Cd, and As by 97.1%, 85.0%, and 80.1%, respectively. Namely, the RNS-SFe hybrid can transform the bioavailable Pb, Cd, and As into insoluble mercapto metal compounds (-S-Pb-S- and -S-Cd-S-) and less soluble iron arsenate (Fe3(AsO4)2, FeAsO4) precipitate on the surface of nano-silica particle, thereby reducing the toxicity and mobility of the toxic contaminant fractions. In the meantime, the immobilized products of the Pb, Cd and As fractions have good resistance against acid leaching. These results are contributive to the application of RNS-SFe for the remediation of multi-heavy metal-contaminated soils in field.


Assuntos
Arsênio/análise , Recuperação e Remediação Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Cádmio/análise , Compostos Ferrosos , Silanos , Dióxido de Silício , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA